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Some Properties of Three Coupled Waves*

LASZLO SOLYMAR~

Summar~—The paper deals with the problem of three waves, 1,
2, and 3, in which waves z and 3 are coupled to wave 1 but not to each

other. The general solution for the amplitudes of the waves is given

in closed form. It is shown that for certain values of the parameters
growing waves can exist. Numerical solutions for the location of the

boundaries of the growing wave regions are plotted. It is shown fur-

thermore that under certain conditions the power can be completely
transferred from wave 1 to waves 2 and 3.

Examples on traveling-wave tubes, waveguide couplers, and

backward-wave oscillators illustrate the applicability of the theory.

1. INTRODUCTTO~

c

OUPLED wave theoryl-’ has in the recent past

proved to be a powerful approach to the approxi-

mate solution of a wide variety of problems. Not

only are the results often quantitatively of sufficient

accuracy, but the physical picture which emerges is also

of great value in understanding the essential nature of

the particular problem.

This paper is an attempt to extend the quantitative

treatment to three lossless coupled waves. In many

cases it turns out that two of the three waves are un-

coupled. Accordingly, this restriction has been imposed

in the paper, with a considerable saving in complexity.

This picture can be successfully applied to the descrip-

tion of waveguide couplers, traveling-wave tubes, and

backward-wave oscillators, but naturally the conclu-

sions are much more general and are valid for any

coupled system.

In Section II the general solution of the coupled wave

differential equation system is given in closed form. In

Section III the condition for growing waves is found and

the results are plotted in Figs. 1–8. In Section IV condi-

tions of complete power transfer are investigated. In

Section V four examples are given which demonstrate

the applicability of the general formulas derived.

II. THE SOLUTION OF THE COUPLED WAVE

DIFFERENTIAL EQUATION SYSTEM

The generality of the solution will be restricted in the

following aspects:

1)

2)

Wave 2 and wave 3 are not coupled.

The couplings between waves 1 and 2, and waves

1 and 3 are assumed to be uniform, i.e., they are

independent of the space variable z.

* Manuscript received by the PGMTT, September 29, 1959.
~ Standard Telecommunications Labs., Ltd., Harlow, Eng.
1J. R. Pierce, “Coupling of modes of propagation, ” ~. Appt. Phys.,

vol. 25, pp. 179–183; February, 1954.
z S. E. Miller, “Coupled wave theory and waveguide applica-

tions, ” Bell. Sys. Tech., J., vol. 33, pp. 661-719; May, 1954.
s J. R. Pierce, “The wave picture of microwave tubes, ” Beil Sys.

Tech. J., vol. 33, pp. 1343–1372; November, 1954.

3) The phase velocities of all three waves are in the

positive direction of the z axis.

4) At the beginmng of the coupled system all the

power is in wave 1.

Subject to the above restrictions the coupled wave

differential equation system can be written as follows:4

dEl
—— .

dz
jfi~El i- jdlzEg +jdnE’

dE,
. ~ = jfndlzEl + j@2E2

dE8
– — = jfndnEl +jf33E3

dz
(1)

where

El, Ez, Es= the amplitudes of waves 1, 2, and 3 re-

spectively,

P,, Pi, P,= the propagation coefficients of waves 1,

2, and 3 respectively,

dlz, d13 = coupling coefficients between waves 1

and 2, and 1 and 3 respectively, and

.f~z, .f~, = + 1 if the energy velocity of wave 2, 3 is

in the same/opposite direction as that of

wave 1.

We now solve the differential equation system by as-

suming the following form for the amplitudes:

El = A leji’z + A2e~~” + A ~e~isz

EZ = BleiilZ + Bzei@ + B3efts’

ES = Cleif’S + Czeiizz + CBeif~z. (2)

Substituting (2) into (1) the unknown coefficients can

be determined, while tl, tz,tsare the roots of the follow-

ing third power equation:

t3i-Tlt2+Td+T~=0 (3)

where

T,=@l+@z+@3

TZ = @@z + ~1/33 + ,&f13 – flzdlzz – flSdls2

TS = ~@2~3 – flzduzba – f]sdn2fl~. (4)

Applying furthermore the boundary conditions, in ac-

cordance with restriction 4),

El(0) = 1, EZ(0) = O, E3(0) = O. (5)

4 The relations between the matrix elements are a direct conse-
quence of the conservation of energy.
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The general solution can be written in the following

closed form:

3 (t, + ,fh)(h + f@ ~jt,z
E,(z) = ~

,=, (f, – t,+,) (t, – L,)

-l?,(z) = – j12d12 i
ti+ /?3

~j~kz

i=,(fi– t,+,)(t,– t,-,)

E3(Z) = – “f13&3 i
t% + P2

t=, (h – t,+,) (h – h-l)

ejt~’ (6)

where

to = t~ and t4= tl.

II 1. THE CONDITION FOR THE EXISTENCE

OF COMPLEX ROOTS

The solution of (3) may result in three real roots or in

one real and two complex roots. It may be seen from

(6) that complex roots mean an attenuating and a

growing wave. It should be appreciated, however, that

the existence of a growing wave solution does not neces-

sarily imply ‘{amplification” in the usual sense. This

will always depend on the boundary conditions imposed

by the physics of the problem. In fact, amplification

can take place even when all the roots are purely

imaginary, two examples being the backward-wave

amplifier and the crestatron. Nevertheless, in most

physical problems, the demarcation between the regions

of pure imaginary and complex roots is of fundamental

significance.

By introducing the new variable

u=t++Tl (7)

we bring (3) into the following more appropriate form:

163+3 HU+G=0 (8)

where

3H = Tz – ~T12

—— - ~[~2 + p2 + (Y – j)2 + 6(~12d122 + f13~132)] (~)

G=; T,3–~TIT, +T, =– #(p+ ?’)(zp-~)

o(27 – T) + 9(ZP – r)f12W + (ZY – P)f13&321 (lo)

p= P3– Bl, r= fii?-pl. (11)

It can be seen that both 1{ and G depend only on the

difference of the propagation coefficients. This is physi-

cally obvious, because it is always possible to regard

one of the waves as stationary.

NTOW We can express in mathematical form the con-

dition for complex roots. Eq. (3) has two complex

roots, if

M= G~+4H3>o. (12)

Substituting (9) and (10) into (12) andl arranging by

powers

M=–

—

+

—4

– 4(f,zd,z2 + fAs2)3. (13)

Since M depends on the direction of the energy veloci-

ties, V.l, V.z, ZJ,3, we have to investigate three cases. De-

noting an energy velocity in the same direction as wave

1 by x, and in the opposite direction as wave 1 by o, we

have the following three cases:

(a) (b) (c)

VG2 s s o

ve3 s o 0.

The fourth possibility (OS) has been omitted as we are

not distinguishing between waves 2 ancl 3. It can be

shown from (13) that case (a) always leads to Ill< O

so that here no growing wave solution exists.

The study of case (b) reveals (Figs. 1–5) that for cer-

tain values of P, r, dlz, dls growing wave solution exists.

The figures show the M= O lines on the P/dI’, r/all’

plane for different values of dls2/dlz2. The curves are

plotted only for positive values of P/dlz, because of the

relation ill(@/dlz, r/dlz) = 31( — ~/dl’, — r/dlJ. Each of

these Figures can be roughly divided into three parts:

1)

2)

3)

The

The neighborhood of the origin,

the neighborhood of the r/dl~ axis (except near the

origin), and

thle neighborhood of the P = r line (except near the

origin).

following conclusions can be drawn for each, re-

spectively:

1)

2)

3)

The greater the coupling to wave 3 compared with

thlat to wave 2, the greater is the extent of the

growing wave region near the origin.

If p =~s–~1=0, i.e., the velocity of wave 3 is near

to, that of wave 1, growing wave solution always

exists irrespective of the value of r/o%. As r/dlz

goes to ( ~ m ) the M= O line approaches the

p/dl, = 2d,s/d,, asymptote (broken lines).

If P > r >0, but @ and r are nearly equal, growing

wave solution exists. This means physically, that

if wave 3 is slower than wave 2 (botlh being slower

than wave 1), but the velocity difference between

waves 2 and 3 is sufficiently small, growing wave

sc,lution exists irrespective of the velocity of

wave 1.
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The ill= O lines for case (c) are plotted in Figs. 6–8

for dl~’/dlzz = 1, 3, 5. It may be seen that growing wave

solution exists, if the velocity of either of the waves 2

or 3 is near to that of wave 1. The maximum velocity

difference between wave 1 and 2, 3 which still leads to

complex roots increases as the coupling between 1 and

2, 3 increases. The asymptotes are:

IV. CONDITIONS OF COMPLETE POWER TR~NSF~R

According to our boundary conditions, all the power

is contained in wave 1 at z = O. In this section we shall

investigate under what conditions this power can be

completely transferred to waves 2 and 3.

Mathematical y, it is equivalent to find the parameters

which give El(z) = O. Since it does not appear that the

general solution can be expressed in closed analytical

form, we restrict generality and give only three solutions.

1) Complete power transfer is possible, if all three

waves have the same velocity. Using the condition

~1 ‘~z =@3, the amplitudes of the waves can be obtained

from (6). Performing the calculations we get

El = e–i~’z cos U,Z

sin u,z
E3 = – jj13d13e–j~’z —

u,
(14)

where

%2 = fd,,z + fmd,#.

Thus complete power transfer takes place at the dis-

tance L, if

u,2>Oand u, L=(2k+l)~[k =0, +1, f2 ...], (15)

2) Complete power transfer is possible, if the coupling

coefficients are identical, the energy velocities of waves

2 and 3 are in the same direction, and the propagation

coefficient of wave 1 is the arithmetical mean of the

propagation coefficients of wave 2 and wave 3.

Using the conditions

the amplitudes can be written as follows:

E2 = exp (- j/31z)&
2’LV2

o{ 7(1 – cos u..z) +ju, sin u,z}

fndls
E3 = exp (– j(?lz) —

%.%

o{ — r(l — cos urz) + jur sin u,z} (17)

where

u, 2 = Yz + 2f12d122.

Complete power transfer takes place at the distance L, it

P
24,2 > 0, r2 < 2dlz2, cos u,L = — — . (18)

2flzdn2

3) Complete power transfer is still possible, when

neither the velocities nor the coupling coefficients are

identical, but then rather strict relationships apply be-

tween the quantities P, ~, dlz, and d13.

The mathematical conditions are as follows:

1
dlz2 = —– ~(2r– p)’

9f,2 p – r

dlt’ = J —~ (2p – 7)2. (19)
9fl, Y – p

Subject to the above conditions, the amplitudes of the

waves can be written as follows:

{

sin U,Z
. 1 + cosu,z + j~(t + r) —

up )

(
E2=exp –j

~1 + p, + /?s f,zd,z

)
?j—

3 3?42

~{ (24 - r)(l - cos w) - 3ju,sin w}

(
E~=exp –j

D1 + @2 + t93 z fndn

3 ) 31L,~

~{ (2Y - P)(1 - cos urz) - 3jur sin U,Z} (20)

where

2L,2 = ; (27 — p)(?’ — 2p).

Complete power transfer takes place at the distance L, if

u,’ > 0

and

u,L = (2k + l)m[k = O, ~ 1, f 2 . . . ]. (21)
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To see more clearly the relationship between the pa-

rameters, f12d122/r2and f1Jd182/r2 are plotted in Fig. 9

against a = ~jr. We can distinguish four regions.

1)

2)

3)

4)

a <O, f12= +1, fl~ = +1. All the waves in the same

direction.

O<a<4,flz= –I, j,,= +1. Wave 2inthe opposite

direction.

~ <a <2. No solution because U,2 <O.

a>2, f,z= 1, f,s = – 1. Wave 3 in the opposite

direction.

The A mplijication

In the case of a

V. EXAMPLES

Domain of a Traveling- Wave Tube

traveling-wave tube, the circuit wave

is coupled to both the slow and the fast space charge

waves. Accordingly, we can identify wave 1 with the

circuit wave, wave 2 with the fast wave, and wave 3

with the slow wave. Writing the propagation and

coupling coefficients into the usual notations of travel-

ing-wave theory5 o we obtain

PI = b; ,82 = D,(1 – XV’(X); 63 = ,8?(1 + 2C<QC)

pee
dlz = dls = -

217QC
(22)

so that

f’–_ 2b(QC)1/4 + 4( QC)3/4
d,,

r
= – 2b(QC)1/4 – 4( QC)8/4.

x
(23)

Since the coupling is the same to both space charge

waves, the condition of amplification can be determined

from Fig. 3. As P is always larger than r, the physically

possible cases are below the P/dlz = r/dlz line.

It may be seen from (23) that P/all, and r/dlz are the

functions of b and QC only. Therefore, the b = constant

and QC= constant curves are plotted in Fig. 10, where

for convenience the axes are rotated by 45 degrees.

From the intersections with the M= O lines the limiting

values of b and QC can be determined. It may be seen

that with decreasing values of QC the range of ampli-

fication is increased and pushed in the direction of lower

values of b, The results of the two coupled waves theory7

s J. R. Pierce, “Travelling-Wave Tubes, ” D. Van iVostrand Co.,
Inc.. New York, N. Y.; 1950.

6 R. W. Gould, ‘(Traveling-wave couplers for longitudinal beam-
type amplifiers, ” PROC. IRE, vol. 47, pp. 419-429; March, 1959.

7 R. W. Gould. “A couuled mode description of the backward
wave oscillator and the Ko~npfner dip condition, ” IRE TRANS. ON
ELECTRON DEVICJZS, vol. ED-2, pp. 37-42; October, 1955.

Fig. 9—A relationship between the parameters which
results in complete power transfer.

QC=O O-25 0.5 1,0

Fig. I.O—The amplification domain of a traveling-wave tube.
. 0 . b = constant curves. . . — . . — QC= constant curves.

(taking account only of the circuit wave and the slow

wave) are represented by the asymptotes (broken lines).

If QC> 0.25 the intersections with the asymptotes give

good approximation.

The above results are, of course, familiar aspects of

Pierce’s theory of the traveling-wave tube;5 the method

of presenting the results here adopted is the ‘(natural”

one for the coupled wave picture, and shows up the es-

sential physical phenomena from a different angle.
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T~aveling- Wave Tube at Kompj’ner Dip

For certain values of beam voltage and current, the

power of the circuit wave can be completely transferred

to the space charge waves. s This is known as the

Kompfner dip condition and it is useful because it per-

mits a direct measurement of the traveling-wave tube

parameters. A number of authorsb ‘g ‘1° have published

numerical solutions for the location of the point.

Unfortunately, our formulas derived in Section IV

are not generally applicable owing to the severe restric-

tions represented by (19). It turns out that its validity

is restricted to one particular case, namely to

b=–: and QC=~.

The amplitudes of the three waves then can be ob-

tained from (20). Since this is the only analytical solu-

tion found so far for the Kornpfner dip condition, it

seems to be worthwhile to write up the formulas.

343 + 5
IE, I’= ~. (1 – Cos #m OL,z)’

+ +n (sin 4720 &2z)2

31/3 – 5
IE,12= (1 – Cos +’20 (i,,Z)’

40

+ ~m (sin iY20 d12z)2.

Complete power transfer takes place when

(24)

@6d12z= (2k+l)7r [k=o, *l, *2.. .].

A feature of this solution (unlike others encountered)

is that the variation of the amplitudes with distance is

periodic.

Complete Power T~ansfer in Waveguides

Let us consider three coupled waveguides, where all

the phase and energy velocities are in the same direction

and waveguides 2 and 3 are not coupled.

A practical example might take the form of a power

divider in which the power in 1 is transferred to particu-

8 R. Kompfner, “On the operation of the traveling wave tube at
~o~filevel, ” J. Brd. IRE, vol. 10, pp. 283–289; August–September,
.. -”.

g H. R. Johnson, “Kompfner dip conditions, ” PROC. IRE, vol. 43,
p. 874; July, 1955.

10R. D. Weglein, ‘[Backward wave oscillator starting conditions?”
IRE TRANS. ON ELECTRON DEVICES, vol. ED-4, pp. 177–179; April,
1957.

lar modes in 2 and 3 in a predetermined ratio. In this

example we assume that

/32 and I ~’(~) 12

63 \ E,(L) IZ = s
(25)

are given, and @l/~3 and d13/dlz are to be found.

It can be shown from (19), (20), and (25) that

S=—a. (26)

Having obtained the value of a, the ratio dlJd13 can be

calculated from (19), or from Fig. 9. From the defini-

tions of p and r [Eq. (11) ] we get furthermore

$“++”3 (27)

Assuming for example, fl’/~3 = 0.8 and S = 0.5 we get

131/P3 = 0.93 and dl,/du = 0.89. The power in the wave-

guides for the above values of the parameters is shown

in Fig. 11 as a function of the normalized distance dl~z.

d12z

Fig. 1l—The power in the waveguides as a function of
the normalized distance, dlzz.

Double Beam Backwavd- Wave Oscillator

In a backward-wave oscillator utilizing two separate
electron beamsll so disposed that the interaction be-

tween them may be neglected, five waves are playing

essential roles: the backward circuit wave, the two fast,

and the two slow waves. However, if QC is large enough

the problem can be greatly simplified. It is sufficient

then to take account of the interaction of the backward

circuit wave with the two slow waves.

Thus we can identify wave 1 with the backward cir-

cuit wave, and waves 2 and 3 with the slow waves.

Since all the energy velocities are in the same direction,

~1~ =~1~ = 1. The tube will oscillate if the power con-

tained in the slow waves can be completely transferred

to the backward circuit wave.

Let us investigate first the simplest case, when both

beams (and thus both slow waves) are identical. Com-

plete power transfer takes place if the propagation co-

efficient of the backward circuit wave is equal to those

u E. A. Ash and A. C. Studd, “Multiple Beam Backward Wave
Oscillators, ” presented at the Electron Tube Conf., Mexico City,
Mexico; June, 1959.
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of the slow waves, and the relation (dlj) ~L = 7r/2 ~?

applies (15), where (dlz)z is the coupling coefficient be-

tween the backward circuit wave and one of the slow

waves at the start of oscillation. If there is only a single

beam, the condition of start oscillation’ is (dlJIL = 7r/2,

where (du) 1 is the coupling coefficient between the back-

ward circuit wave and the slow wave. Thus the neces-

sary value of the coupling coefficient for the start of

oscillation is smaller if both beams are present. Keeping

the beam voltage constant, the ratio of the starting cur-

rents is as follows:

(28)

Thus the beam current in a double-beam backward-

wave oscillator drops by a factor 4, and the total current

is still only half of that which is necessary in the single

beam device.

If the beam voltages are slightly different, the cou-

pling coefficients can still be regarded as identical be-

cause they are slowly varying functio rrs of the beam

voltage. Thus, applying the formulas of Section IV, the

propagation coefficient of the backward circuit wave is

the arithmetical mean of the propagatic,n coefficients of

the slow waves.

It may be seen from (17) that for finite voltage differ-

ences the starting current increases, whiclh agrees quali-

tatively with the experimental results.’l If

Y2 > 2dlZ2,

the annplitude of the backward circuit wave cannot be

made zero. Thus, beyond a certain voltage difference,

no oscillation can be obtained, however long the circuit.

ACKNO\VLEDGMENT

The author wishes to thank Dr. E. A. Ash for many

interesting discussions. Thanks are also due to Standard

Telecommunication Laboratories Ltd., for permission

to publish the paper.

Noise Figures of Reflex Klystron Amplifiers’

KORYU

Summary—The noise figure of the 2K25 reflex klystron amplifier
was investigated. The noise figure of the reflex klystron amplifier
depends on operating frequency, electronic impedance, circuit im-

pedance, and operating electronic mode. Experimental results show

that a noise figure of 5 db is possible under particularly carefully

adjusted conditions. In order to obtain the low-noise figure, careful
electronic tuning and the impedance adjustments are particularly

important. Generally, relatively low noise figures were obtained when

the electronic tuning was good. Noise figures of cascaded reflex klys-

tron amplifiers were also investigated experimentally. Noise figures

of the cascaded amplifier were generally higher than that of the single
stage amplifier, but still low enough to use thk reflex klystron ampli-
fiers as a preamplifier of a microwave receiver to increase the sensi-

tivity of the receiving system.

INTRODUCTION

T

HE use, as regenerative or negative conductance

amplifiers, of reflex klystrons originally designed

for use in oscillators, would offer several advan-

tages to microwave receiver design. Ordinary, smali-

power reflex klystrons are relatively inexpensive, and

require neither the high voltages used in TIV tubes nor

the great magnetic force necessary in magnetrons.

There is some controversy about such an application

for reflex klystrons. In the first place, it is questioned

whether employment of the reflex klystron amplifier

* Manuscript received by the PGMTT, September 4, 1959; re-
vised manuscript received, INovember 9, 1959.

t Dept. of Elec. Engrg., Marquette University, Milwaukee, Wis.

ISHII~

really does increase the sensitivity of a microwave re-

ceiver. To increase the receiver’s sensitivity, the reflex

klystron would have to provide a good gain and at the

same time have a low noise figure.

Several papers have been published clescribing the

gain achieved with reflex klystron amplifiers. Okabe~

obtained a gain of over 20 db at 3000 rnc with a 707B

reflex klystron. IshiF,3 obtained a gain of more than 16 db

at 9760 mc with a 723A/B reflex klystron. Quate,

Kornpfner and Chisholm’ reported a gain of more than

30 db at 11,000 mc with a WE445A reflex klystron.

These papers demonstrate that a substantial gain im-

provement is possible, but no useful data on noise

figures was obtained. For example, Oki~be reported a

noise figure of less than 7 db but Quate reported 40 db.

Clearly, a study of the noise figure itself was required

if the value of the reflex klystron amplifrer was to be

verifiec[ or denied.

1T. Okabe, “Microwa>-e amplification by the use of reflex klys-
tron, ” Rfport of Microwa?,e Re.rea~ch Committee in Japan; June and
July, 19:;2.

2 K. [shii, “X-band receiving amplifier, ” Elect} onics, vol. 28, pp.
202–210; April, 1955.

3 K. 1shii, “Oneway circuit by the use of a hybrid T for the reflex
klystron amplifier, ” PROC. IRE, vol. 45, p. 687; May, 1957.

4 C. F. Quate, R. Kompfner, and D. A. ChishrJm, “The reflex
klystron as a negztive resistance type amplifier, ” IRE TRANS. ON
ELECTRON DiWICES, vol. ED-5, pp. 173-170; July, 1958.


