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Some Propetties of Three Coupled Waves®

LASZLO SOLYMARfY

Summary—The paper deals with the problem of three waves, 1,
2, and 3, in which waves 2 and 3 are coupled to wave 1 but not to each
other. The general solution for the amplitudes of the waves is given
in closed form. It is shown that for certain values of the parameters
growing waves can exist. Numerical solutions for the location of the
boundaries of the growing wave regions are plotted. It is shown fur-
thermore that under certain conditions the power can be completely
transferred from wave 1 to waves 2 and 3.

Examples on traveling-wave tubes, waveguide couplers, and
backward-wave oscillators illustrate the applicability of the theory.

I. INTRODUCTION

OUPLED wave theory'—® has in the recent past
(g proved to be a powerful approach to the approxi-

mate solution of a wide variety of problems. Not
only are the results often quantitatively of sufficient
accuracy, but the physical picture which emerges is also
of great value in understanding the essential nature of
the particular problem.

This paper is an attempt to extend the quantitative
treatment to three lossless coupled waves. In many
cases it turns out that two of the three waves are un-
coupled. Accordingly, this restriction has been imposed
in the paper, with a considerable saving in complexity.
This picture can be successfully applied to the descrip-
tion of waveguide couplers, traveling-wave tubes, and
backward-wave oscillators, but naturally the conclu-
sions are much more general and are wvalid for any
coupled system.

In Section I1 the general solution of the coupled wave
differential equation system is given in closed form. In
Section III the condition for growing waves is found and
the results are plotted in Figs. 1-8. In Section IV condi-
tions of complete power transfer are investigated. In
Section V four examples are given which demonstrate
the applicability of the general formulas derived.

I1. TuE SoruTioN OF THE COUPLED WAVE
DIFFERENTIAL EQUATION SYSTEM

The generality of the solution will be restricted in the
following aspects:

1) Wave 2 and wave 3 are not coupled.

2) The couplings between waves 1 and 2, and waves
1 and 3 are assumed to be uniform, 7.e., they are
independent of the space variable z.

* Manuscript received by the PGMTT, September 29, 1959,

1 Standard Telecommunications Labs., Ltd., Harlow, Eng.

1 T. R. Pierce, “Coupling of modes of propagation,” J. Appl. Phys.,
vol, 25, pp. 179-183; February, 1954.

28, E. Miller, “Coupled wave theory and waveguide applica-
tions,” Bell. Svs. Tech., J., vol. 33, pp. 661-719; May, 1954.

3 J. R. Pierce, “The wave picture of microwave tubes,” Bell Sys.
Tech. J.,vol. 33, pp. 1343-1372; November, 1954.

3) The phase velocities of all three waves are in the
positive direction of the z axis.

4) At the beginming of the coupled system all the
power is in wave 1.

Subject to the above restrictions the coupled wave
differential equation system can be written as follows:*

dEy . )
- ”‘gz— = ]61E1 + ]d12E2 + 7d13Es

dE2 . .
B Jf12d1aEy 4 jB2Es
P

dE; | .
— —— = jf1sdisE1 + jB3Es 1)

dz

where

E., Es, E;=the amplitudes of waves 1, 2, and 3 re-
spectively,
81, B3, B3=the propagation coefficients of waves 1,
2, and 3 respectively,
di1s, dyz=coupling coefficients between waves 1
and 2, and 1 and 3 respectively, and
fi2, fis= 11 if the energy velocity of wave 2, 3 is
in the same/opposite direction as that of
wave 1.

We now solve the differential equation system by as-
suming the following form for the amplitudes:

By = dyorts 4 dgoits 4 Ageiter
Ey = Broits + Baeites | Byeitss
Es = Cle“” + Cze“” + Cseﬂsz. (2)

Substituting (2) into (1) the unknown coefficients can
be determined, while ¢y, 5, 5 are the roots of the follow-
ing third power equation:

£ Tutt + Tof + Ty = 0 3)
where
Th=81+B:+8Bs
Ty = B1Ba + B1Bs + Bafs — fradie® — fiadus®
Ts = 818285 — f12d12°8s — f13d15Ba. 4)

Applying furthermore the boundary conditions, in ac-
cordance with restriction 4),

Ei0) =1,  Ey(0) =0, E40) =0. ©)

* The relations between the matrix elements are a direct conse-
quence of the conservation of energy.
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The general solution can be written in the following
closed form:

B - 3 88

i1 (= L) (e — £i1)

itiz

3 ti 1 B3
E _ d itz
z(z) f12 12 g (l‘; - tz+1) ([2 —_ lz—l) )
3 ¢,
Es(z) = — fiadis Z o e )

=1 (e~ lopr)(t — tioy)
where

to =13 and 4 = {1
III. THE CONDITION FOR THE EXISTENCE
or CoMPLEX RooTts

The solution of (3) may result in three real roots or in
one real and two complex roots. It may be seen from
(6) that complex roots mean an attenuating and a
growing wave. It should be appreciated, however, that
the existence of a growing wave solution does not neces-
sarily imply “amplification” in the usual sense. This
will always depend on the boundary conditions imposed
by the physics of the problem. In fact, amplification
can take place even when all the roots are purely
imaginary, two examples being the backward-wave
amplifier and the crestatron. Nevertheless, in most
physical problems, the demarcation between the regions
of pure imaginary and complex roots is of fundamental
significance.

By introducing the new variable

u =1+ 3T (N
we bring (3) into the following more appropriate form:
w4+ 3Hu+ G =0 (8)
where
3H=T,— 3T
= — 32+ p2 4 (r — 9)* + 6(f1dee® + frsdis?)] (9)

2
— T3 — §T\T:+ T3 =

1
G=_ —E[<p+r)<2p—7>
(27’ - P) =+ 9(2P - 7’)f12d12? + (27’ - P)f13d132] (10)
p = Bs — By r =B — B (11)

It can be seen that both H and G depend only on the
difference of the propagation coefficients. This is physi-
cally obvious, because it is always possible to regard
one of the waves as stationary.

Now we can express in mathematical form the con-
dition for complex roots. Eq. (3) has two complex
roots, if

M =G*+ 4H* > 0, (12)
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Substituting (9) and (10) into (12) and arranging by
powers of p, we obtain:

M = — p*(r* + 4f1ad1?) + 2p%(r? — frsdrs® + df1adis?)
— Pt + 272 (fradi? + fradas?) — 8dis?
+ 20f19f13d192d 152 + dist]
+ 2pr[r?(df13d15® — fradie?) — ddya
+ 19f1sf15dsotdss® — 4z
— drifisdis? — r2(dist + 20f1of13dr02d 152 — 8d1s?)
— 4(f12d12? + frsdi5)% (13)

Since M depends on the direction of the energy veloci-
ties, U.1, U, Ues, We have to investigate three cases. De-
noting an energy velocity in the same direction as wave
1 by s, and in the opposite direction as wave 1 by o, we
have the following three cases:

(a) (b) (c)
Vo2 N S 0
Ves N 0 0.

The fourth possibility (os) has been omitted as we are
not distinguishing between waves 2 and 3. It can be
shown from (13) that case (a) always leads to M <0
so that here no growing wave solution exists.

The study of case (b) reveals (Figs. 1--5) that for cer-
tain values of p, 7, d1s, d15 growing wave solution exists.
The figures show the M =0 lines on the p/dys, 7/d1s
plane for different values of dis2/dis2. The curves are
plotted only for positive values of p/dis, because of the
relation M(p/dys, v/d19) = M(—p/d1s, —r/d12). Each of
these Figures can be roughly divided into three parts:

1) The neighborhood of the origin,

2) the neighborhood of the r/d1. axis (except near the
origin), and

3) the neighborhood of the p=r line (except near the
origin).

The following conclusions can be drawn for each, re-
spectively:

1) The greater the coupling to wave 3 compared with
that to wave 2, the greater is the extent of the
growing wave region near the origin.

2) If p=B3—PB1=0, 1.e., the velocity of wave 3 is near
to that of wave 1, growing wave solution always
exists irrespective of the value of 7/ds. As #/dys
goes to (F«) the M =0 line approaches the
p/d1s=2d1s/d1; asymptote (broken lines).

3) If p>r>0, but p and r are nearly equal, growing
wave solution exists. This means physically, that
if wave 3 is slower than wave 2 (both being slower
than wave 1), but the velocity difference between
waves 2 and 3 is sufficiently small, growing wave
solution exists irrespective of the velocity of
wave 1.
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Fig. 1—The domain of complex roots for

Ju=1, fis=—1, di?/d*=1/5.
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fu=1, fia=—1, di?/d?=1/3.
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The M =0 lines for case (c) are plotted in Figs. 6-8
for d1s*/d1* =1, 3, 5. It may be seen that growing wave
solution exists, if the velocity of either of the waves 2
or 3 is near to that of wave 1. The maximum velocity
difference between wave 1 and 2, 3 which still leads to
complex roots increases as the coupling between 1 and
2, 3 increases. The asymptotes are:

r
dis dig
7 V4 dis
—— — <0 _— = —_—
diz di2 di2

IV. ConpiTions oF CoMPLETE POWER TRANSFER

According to our boundary conditions, all the power
1s contained in wave 1 at z==0. In this section we shall
investigate under what conditions this power can be
completely transferred to waves 2 and 3.

Mathematically, it is equivalent to find the parameters
which give E;(2) =0. Since it does not appear that the
general solution can be expressed in closed analytical
form, we restrict generality and give only three solutions.

1) Complete power transfer is possible, if all three
waves have the same velocity. Using the condition
B1=82=0;, the amplitudes of the waves can be obtained
from (6). Performing the calculations we get

Ey = ¢ #12 cos u,z

. . sin 4,2
Ey = — jfisdise12
%,
) o sin 4,3
E; = —]f13d136_1812 (14)
Ur

where
RS f12d122 +f13d132-

Thus complete power transfer takes place at the dis-
tance L, if

2> 0and u,L = (2k-}—1)%r[k= 0,+1,+2---]. (13)

2) Complete power transfer is possible, if the coupling
coefficients are identical, the energy velocities of waves
2 and 3 are in the same direction, and the propagation
coefficient of wave 1 is the arithmetical mean of the
propagation coefficients of wave 2 and wave 3.

Using the conditions

B2+ B
- 22—3 and  fiodiz = fisdis,

1

(16)

the amplitudes can be written as follows:
exp (— jB12) ¢
”— 5 t

>

E1=

72 4 2f10d12° cos u,z}
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d
Ey = exp (— jBi2) Jr 212
oy
. {r(l — COS %,%) + ju, sin u,z}
. J1sd1s
Es = exp (— jB1z) "
Uy
. { — #(1 — cos u,3) + ju,sin urz} an

where
ut = r? 4 2f12d122-
Complete power transfer takes place at the distance L, it

2

u,2 > 0, -
2f12d12“

r: < 2d,2%, cos u, L = —

(18)

3) Complete power transfer is still possible, when
neither the velocities nor the coupling coefficients are
identical, but then rather strict relationships apply be-
tween the quantities p, 7, dis, and dys.

The mathematical conditions are as follows:

dlgz = —1— —p— (21’ - ]‘))2
9f12 P — 7

b= Ty (19)
s r—p

Subject to the above conditions, the amplitudes of the
waves can be written as follows:

B, = éexp<—j61+62+ﬁgz>
3
sin .2
-{l—i—cosurz + 720+ }
Uy
< B+ B2+ Bs >f1zd12
Ey =exp| —7 L4
3 3u,*
-{(2? — 7)1 — cos #,3) — 3ju,sin u,,z}
( B+ B2+ B3 >f13d13
E; =expl| —J 4
3 3u,?

4 @r = p)(1 — cos uz) — 3ju, sin .z} (20)

where
2
12 = o 2r — p)(r — 2p).

Complete power transfer takes place at the distance L, if
u,? >0
and

wl = Q2k+ Drlk=0,+1,+2---].

(21)
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To see more clearly the relationship between the pa-
rameters, fiad122/7% and fiadis?/7? are plotted in Fig. 9
against ¢ =p/r. We can distinguish four regions.

1) a<0, fi2=+1, fi3=+1. All the waves in the same
direction.

2) 0<a<}, fiz=—1,f1;=-+1. Wave 2 in the opposite
direction.

3) 3 <a<?2. No solution because #«,2<0.

4) a>2, fio=1, fia=—1. Wave 3 in the opposite
direction.

V. EXAMPLES
The Amplification Domain of ¢ Traveling-Wave Tube

In the case of a traveling-wave tube, the circuit wave
is coupled to both the slow and the fast space charge
waves. Accordingly, we can identify wave 1 with the
circuit wave, wave 2 with the fast wave, and wave 3
with the slow wave. Writing the propagation and
coupling coefficients into the usual notations of travel-
ing-wave theory® we obtain

B1=8; B2= Bl —2Cv/0C); Bs = B.(l + 2C/QC)

dio = iy = < (22)
12 — @13 — 2\4/@
so that
p 4 3/4
e 26(QC) 14 + 4(QC)¥
7;_ = — 25(QC) 1 — 4(QC), (23)
12

Since the coupling is the same to both space charge
waves, the condition of amplification can be determined
from Fig. 3. As p is always larger than 7, the physically
possible cases are below the p/dis=r/d1s line.

It may be seen from (23) that p/d;s and 7/d;s are the
functions of b and QC only. Therefore, the b =constant
and QC=constant curves are plotted in Fig. 10, where
for convenience the axes are rotated by 45 degrees.
From the intersections with the M =0 lines the limiting
values of b and QC can be determined. It may be seen
that with decreasing values of QC the range of ampli-
fication is increased and pushed in the direction of lower
values of . The results of the two coupled waves theory?

5 J. R. Pierce, “Travelling-Wave Tubes,” D. Van Nostrand Co.,
Inc., New York, N. Y.; 1950.

8 R. W. Gould, “Traveling-wave couplers for longitudinal beam-
type amplifiers,” Proc. IRE, vol. 47, pp. 419-429; March, 1959,

7R. W. Gould, “A coupled mode description of the backward
wave oscillator and the Kompfner dip condition,” IRE TraNs. oN
ErLecTrON DEVICES, vol. ED-2, pp. 37-42; October, 19535.
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Fig. 10—The amplification domain of a traveling-wave tube.
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(taking account only of the circuit wave and the slow
wave) are represented by the asymptotes (broken lines).
If QC>0.25 the intersections with the asymptotes give
good approximation.

The above results are, of course, familiar aspects of
Pierce's theory of the traveling-wave tube;’ the method
of presenting the results here adopted is the “natural”
one for the coupled wave picture, and shows up the es-
sential physical phenomena from a different angle.
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Traveling-Wave Tube at Kompfner Dip

For certain values of beam voltage and current, the
power of the circuit wave can be completely transferred
to the space charge waves.® This is known as the
Kompfner dip condition and it is useful because it per-
mits a direct measurement of the traveling-wave tube
parameters. A number of authors®?! have published
numerical solutions for the location of the point.

Unfortunately, our formulas derived in Section 1V
are not generally applicable owing to the severe restric-
tions represented by (19). It turns out that its validity
is restricted to one particular case, namely to

5
d C=—"
an Q T

3

ho= — —

2

The amplitudes of the three waves then can be ob-

tained from (20). Since this is the only analytical solu-

tion found so far for the Kompfner dip condition, it
seems to be worthwhile to write up the formulas.

| E1]? = 2{(1 + cos /20 disz)? + 2(sin /20 d122)?}

3vV5+5 .
| B2 = SAAIUL (1 — cos /20 dyss)?
40
- (sin VD du)®
— (81N Z
\/20 12
3V5-35 __
| B3| = ———— (1 — cos v/20 d132)*

40

U
-+ \/—X) (Sln \/20 dlzz) . (24)

Complete power transfer takes place when

N20dpz = k+ Do fk=0+1,+2...].

2
A feature of this solution (unlike others encountered)
1s that the variation of the amplitudes with distance is
periodic.

Complete Power Transfer in Waveguides

Let us consider three coupled waveguides, where all
the phase and energy velocities are in the same direction
and waveguides 2 and 3 are not coupled.

A practical example might take the form of a power
divider in which the power in 1 is transferred to particu-

8 R. Kompfner, “On the operation of the traveling wave tube at
11<)9v§01eve1,” J. Brit. IRE, vol. 10, pp. 283-289; August—September,

¢ H. R. Johnson, “Kompfner dip conditions,” Proc. IRE, vol. 43,
p. 874; July, 1955.

10 R. D. Weglein, “Backward wave oscillator starting conditions,”
E}SE'] Trans. oN ELECTRON DEVICES, vol. ED-4, pp. 177-179; April,
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lar modes in 2 and 3 in a predetermined ratio. In this
example we assume that

62 | EA(D)]* _

and ————F— = (25)
Bs | E5(L) |
are given, and $81/8; and d13/d12 are to be found.
It can be shown from (19), (20), and (25) that
s = —a. (26)

Having obtained the value of @, the ratio di2/d1s can be
calculated from (19), or from Fig. 9. From the defini-
tions of p and r [Eq. (11) | we get furthermore

B1 1 l: ,32]
—= 1—a— 1.
B3 1—a B3
Assuming for example, 8:/8;=0.8 and s=0.5 we get
B81/8:=0.93 and d12/d13=0.89. The power in the wave-

guides for the above values of the parameters is shown
in Fig. 11 as a function of the normalized distance dyz.

(27)
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Fig. 11—The power in the waveguides as a function of
the normalized distance, dis3.

Double Beam Backward-Wave Oscillator

In a backward-wave oscillator utilizing two separate
electron beams!! so disposed that the interaction be-
tween them may be neglected, five waves are playing
essential roles: the backward circuit wave, the two fast,
and the two slow waves. However, if QC is large enough
the problem can be greatly simplified. It is sufficient
then to take account of the interaction of the backward
circuit wave with the two slow waves.

Thus we can identify wave 1 with the backward cir-
cuit wave, and waves 2 and 3 with the slow waves.
Since all the energy velocities are in the same direction,
J12=f13=1. The tube will oscillate if the power con-
tained in the slow waves can be completely transferred
to the backward circuit wave.

Let us investigate first the simplest case, when both
beams (and thus both slow waves) are identical. Com-
plete power transfer takes place if the propagation co-
efficient of the backward circuit wave is equal to those

BE A Ash and A. C. Studd, “Multiple Beam Backward Wave
Oscillators,” presented at the Electron Tube Conf., Mexico City,
Mexico; June, 1959,
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of the slow waves, and the relation (dis)eL =m/2+/2
applies (15), where (di2)s is the coupling coeflicient be-
tween the backward circuit wave and one of the slow
waves at the start of oscillation, If there is only a single
beam, the condition of start oscillation? is (dw)1L =7/2,
where (dis)1 is the coupling coefficient between the back-
ward circuit wave and the slow wave. Thus the neces-
sary value of the coupling coefficient for the start of
oscillation is smaller if both beams are present. Keeping
the beam voltage constant, the ratio of the starting cur-
rents is as follows:

[2 _ [ (d12)2:!4 1
Lo L@w.d "
Thus the beam current in a double-beam backward-
wave oscillator drops by a factor 4, and the total current
is still only half of that which is necessary in the single

beam device.
If the beam voltages are slightly different, the cou-

(28)
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pling coefficients can still be regarded as identical be-
cause they are slowly varying functions of the beam
voltage. Thus, applying the formulas of Section IV, the
propagation coefficient of the backward circuit wave is
the arithmetical mean of the propagation coefficients of
the slow waves.

[t may be seen from (17) that for finite voltage differ-
ences the starting current increases, which agrees quali-
tatively with the experimental results.’* If

2 > 2dy?,

the amplitude of the backward circuit wave cannot be
made zero. Thus, beyond a certain voltage difference,
no oscillation can be obtained, however long the circuit.
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Noise Figures of Reflex Klystron Amplifiers®

KORYU ISHIT{

Summary—The noise figure of the 2K25 reflex klystron amplifier
was investigated. The noise figure of the reflex klystron amplifier
depends on operating frequency, electronic impedance, circuit im-
pedance, and operating electronic mode. Experimental results show
that a noise figure of 5 db is possible under particularly carefully
adjusted conditions. In order to obtain the low-noise figure, careful
electronic tuning and the impedance adjustments are particularly
important. Generally, relatively low noise figures were obtained when
the electronic tuning was good. Noise figures of cascaded reflex klys-
tron amplifiers were also investigated experimentally. Noise figures
of the cascaded amplifier were generally higher than that of the single
stage amplifier, but still low enough to use this reflex klystron ampli-
fiers as a preamplifier of a microwave receiver to increase the sensi-
tivity of the receiving system.

INTRODUCTION

HE use, as regenerative or negative conductance
amplifiers, of reflex klystrons originally designed
for use in oscillators, would offer several advan-
tages to microwave receiver design. Ordinary, small-
power reflex klystrons are relatively inexpensive, and
require neither the high voltages used in TW tubes nor
the great magnetic force necessary in magnetrons.
There is some controversy about such an application
for reflex klystrons. In the first place, it is questioned
whether employment of the reflex klystron amplifier

* Manuscript received by the PGMTT, September 4, 1959; re-
vised manuscript received, November 9, 1959, .
+ Dept. of Elec. Engrg., Marquette University, Milwaukee, Wis.

really does increase the sensitivity of a microwave re-
ceiver. To increase the receiver’s sensitivity, the reflex
klystron would have to provide a good gain and at the
same time have a low noise figure.

Several papers have been published describing the
gain achieved with reflex klystron amplifiers. Okabe?
obtained a gain of over 20 db at 3000 mc with a 7078
reflex klystron. Ishii®? obtained a gain of more than 16 db
at 9760 mc with a 723A/B reflex klystron. Quate,
Kompfner and Chisholm?! reported a gain of more than
30 db at 11,000 mc with a WE445A reflex klystron.
These papers demonstrate that a substantial gain im-
provement is possible, but no useful data on noise
figures was obtained. For example, Okabe reported a
noise figure of less than 7 db but Quate reported 40 db.
Clearly, a study of the noise figure itself was required
if the value of the reflex klystron ampliier was to be
verified or denied.

t T. Okabe, “Microwave amplification by the use of reflex klys-
tron,” Report of Microwave Research Comuitice in Japan; June and
July, 1952.

2 K. [shii, “X-band receiving amplifier,” Electronics, vol. 28, pp.
202-210; April, 19535.

3 K. Ishii, “Oneway circuit by the use of a hybrid T for the reflex
klystron amplifier,” Proc. IRE, vol. 43, p. 687; May, 1957.

¢+ C. F. Quate, R, Kompfner, and D. A. Chisholm, “The reflex
klystron as a negative resistance type amplifier,” IRE TrRANs. ON
ELECTRON DEVICES, vol. ED-5, pp. 173-170; July, 1958.



